TECHNICAL NOTE

Identification and characterization of nuclear microsatellite loci for multiple species of chorus frogs (*Pseudacris*) for population genetic analyses

Emily Moriarty Lemmon · Melanie Murphy · Thomas E. Juenger

Received: 17 September 2010/Accepted: 21 September 2010 © Springer Science+Business Media B.V. 2010

Abstract Microsatellites were developed from an enriched genomic library of *Pseudacris feriarum* and *P. nigrita*. For 85 *P. feriarum*, six loci averaged 59 alleles, with loci ranging from 42–71 alleles. Observed heterozygosity averaged 0.72/locus (range: 0.42–0.84). In 142 *P. maculata*, seven additional loci (plus two loci above) averaged 8 alleles, with loci ranging from 3–16 alleles. Observed heterozygosity averaged 0.60/locus (range: 0.35–0.81).

Keywords Chorus frogs · Hybrid zone · Microsatellites · *Pseudacris nigrita · Pseudacris feriarum · Pseudacris maculata*

Introduction

The North American chorus frogs (*Pseudacris*) have become the focus of phylogenetic and phylogeographic studies (Moriarty and Cannatella 2004; Lemmon et al. 2007a, b; Lemmon and Lemmon 2008) as well as recent

Electronic supplementary material The online version of this article (doi:10.1007/s12686-010-9330-2) contains supplementary material, which is available to authorized users.

E. M. Lemmon · T. E. Juenger
Section of Integrative Biology, University of Texas at Austin,
1 University Station C0930, Austin, TX 78712, USA

M. Murphy

Department of Renewable Resources, Ag. 2010, University of Wyoming, 1000 E University Ave., Laramie, WY 82071, USA

E. M. Lemmon (⊠) Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA e-mail: chorusfrog@bio.fsu.edu work on speciation via reinforcement (Lemmon 2009; Lemmon and Lemmon 2010). The microsatellites in the present study were developed to examine natural hybridization rates between *P. feriarum* and *P. nigrita* (Lemmon and Juenger unpub.). Further, nine loci were optimized in *P. maculata* for a landscape genetic study (Murphy et al. in prep.). Markers were also tested in five other *Pseudacris* species.

Four microsatellite-enriched libraries were constructed from pooled genomic DNA of *P. feriarum/P. nigrita* by Genetic Identification Systems (as described by Matthews et al. 2007). Inserts from recombinant clones were sequenced with the M13(-24) forward and/or M13 reverse primers using a BigDye terminator Cycle Sequencing kit on an Applied Biosystems 3,100 PRISM DNA Sequencer. Of 269 clones sequenced, 234 contained microsatellites.

Primers were designed for 80 unique loci and tested in frogs from the following counties: P. feriarum (Macon:AL [n = 20], Liberty:FL [n = 4], Ann Arundel:MD [n = 4], Davie:NC [n = 3], Wake: NC [n = 7], and Cumberland: VA [n = 4]), and *P. nigrita* (Brevard:FL [n = 4], Holmes:FL [n = 6], Jefferson:FL [n = 3], Liberty:FL [n = 5], Watson:FL [n = 2], McIntosh:GA [n = 18], Harrison:MS [n = 2]). Twenty loci were tested for cross-species amplification in five additional species: P. brachyphona (Hocking:OH [n = 1], Harrison:WV [n = 1]), P. clarkii (Garfield:OK [n = 1], Cameron:TX [n = 1]), P. fouquettei (Beauregard:LA [n = 1], Lamar:TX [n = 1]), P. kalmi (Accomack:VA [n = 1], Northampton:VA [n = 1]), and *P. triseriata* (Ingham:MI [n = 1], Highland:OH [n = 1]). Twenty-three loci were tested for cross-species amplification in *P. maculata* (Park:CO [n = 4], Teton:CO [n = 3], Ward:ND [n = 1], Lawrence:SD [n = 1]).

Tissues were extracted using the Viogene Blood and Tissue Genomic DNA Extraction System. Unlabeled

characterize	ed in 142 inc	lividuals of P. maculata from five locations acr	oss Yellow	stone National Park, WY	2						
Locus name	Species	Primer sequence 5'-3' and Label	Multiplex	Repeat motif	Size (bp)	Prop. Genotyped	\mathbf{A}_{N}	$T_{\rm a}$ (°C)	Ho	$\mathrm{H_{E}}$	HW P value
D6	P. feriarum P. nigrita	F: CTGCTGTGATATTTTTGTG NED R: GGTGTCGTGAGCTAAGTGTT	Lemmon_1	(TATC) ₉ (TA) ₂ (TATC) ₅ TTTC(TATC) ₃	100–372	844/863	42	54	0.8000	0.9337	0.0022*
D_C08b	P. feriaruml P. nigrita	F: CTTACACAGCTCCATAGAATATGACA HEX R: ACAAACCTACAGGAGCTGATAGAAT	Lemmon_1	(TA) ₃ TGGGG(TC) ₅ CCTCCGCTCCCTTC(CT) ₆ ATACATGCATATAGAT(ATAG) ₁₆ ATGTAGA(TA) ₃	227-445	845/863	70	54	0.8000	0.9433	0.0000*
D_D12b	P. feriarum/ P. nigrita	F: TATAACATGTAACTGGGCTAACA FAM R: AGGAGAAGAGCCATTTCCTG	Lemmon_1	(TCTA) ₃₀	268-532	802/863	52	54	0.8353	0.8869	0.4316
D_D10	P. feriarum/ P. nigrita	F: CTCTACATACATTTACCTTCTACCTTC NED R: GCTGTCTACTGAATTTATACTGTAAGG	Lemmon_2	(TCTA) ₂₂	153–398	842/863	46	54	0.4235	0.4821	0.0929
D_D10b	P. feriarum/ P. nigrita	F: AATAGGTCAGCACATCCAAA FAM R: CTGCATGATGGAATAAACCTAT	Lemmon_2	(TAGA) ₉ T(TAGA) ₂ CAGA(TAGA) ₃ CAGATAGACAGATAAA(CAGA) ₅	148484	823/863	71	54	0.7176	0.9696	0.0195
D_E10	P. feriarum P. nigrita	F: TAGATCATCAGTTTCTGAAATACC HEX R: AAACTGAAGGATGAGTATGCTG	Lemmon_2	(AC)4A(TATC) ₅ TAA(TATC) ₃ TCA(TATC) ₃ TAA(TATC) ₃ TCA(TATC) ₃ TAA(TATC) ₃ TCA(TATC) ₅ TAA(TATC) ₃ TCA(TATC) ₅	258-520	774/863	71	54	0.7470	0.9552	0.0000*
A8	P. maculata	F: AAAAAGGGTCAGTGATAGCC FAM R: GACCTAAGCTCAGCACTG	Murphy_2	(CA)3CG(CA)16	90–145	132/142	٢	58	0.63	0.62	0.6734
DII	P. maculata	F: CTTAAGATTCATACCAGGTGAAATAGG VIC R: CAAGGGAACAGTTTTCTTCA	Murphy_2	(TCTA) ₁₆	70-95	142/142	Ś	58	0.48	0.51	0.4123
D_A10b	P. maculata	F: ACTACTITACATTGTAGCAGAGTGTCAT VIC R: CATAACTTCATTGTTCAACTGGATG	Murphy_1	(TA) ₃ TCAA(TCTA) ₁₃ TCTCATA(TCTA) ₁₄ TCTGTCAG(TCTG) ₄	290–310	139/142	6	58	0.56	0.54	0.5436
D_C08b	P. maculata	F: CTTACACAGCTCCATAGAATATGACA FAM R: ACAAACCTACAGGAGCTGATAGAAT	Murphy_2	(TA) ₃ TGGGG(TC) ₅ CCTCCGCTCCCTTC(CT) ₆ ATACATGCATATAGAT(ATAG) ₁₆ ATGTAGA(TA) ₃	260–300	139/142	16	58	0.79	0.81	0.4217
D_D11b	P. maculata	F: GTATGACAGAACTGATCTCTGC NED R: GAGTCGTTCACTTTCATTTATAGTC	Murphy_2	(TCTA) ₉	370–390	133/142	11	58	0.72	0.74	0.2142
D_E04	P. maculata	F: ATGAAGAGTCTGACGTGTCTTTCTT PET R: CCCACATGCCTTACTTTCATAG	Murphy_1	(TCTA) ₁₇	200–220	142/142	б	58	0.41	0.45	0.1514
D_E06	P. maculata	F: ATTCACTGAGTGGCAGTATTAAACA PET R: AGCTTTCTATCAGCTTTAGTGAGTCTAT	Murphy_1	(GATA) ₇ GAT(GATA) ₂	410-450	114/142	Ś	58	0.62	0.65	0.4352
D_E10	P. maculata	F: TAGATCATCAGTTTCTGAAATACC FAM R: AAACTGAAGGATGAGTATGCTG	Murphy_1	(AC) ₄ A(TATC) ₅ TAA(TATC) ₃ TCA(TATC) ₃ TAA(TATC) ₃ TCA(TATC) ₃ TAA(TATC) ₃ TCA(TATC) ₅	350-410	125/142	4	58	0.35	0.40	0.1034

Table 1 Six microsatellite loci isolated from Pseudacris feriarum and P. nigrita and characterized in 85 individuals of P. feriarum from Macon Co., AL and nine microsatellite loci

primers were designed using PRIMER3 and tested in 75 markers from a tetranucleotide library and 5 from a dinucleotide library. Microsatellites were amplified in 10 μ l reactions of 4.4 μ l H₂0, 1.0 μ l 10× NH4-based reaction buffer (Bioline), 0.8 μ l 10 mM dNTPs, 0.3 μ l 50 mM MgCl₂, 1.0 μ l 1.5 μ M forward primer, 1.0 μ l 1.5 μ M reverse primer, 0.02 μ l Biolase DNA polymerase (Bioline), and 1.5 ul of 10–50 ng/ μ l DNA on a MJ Research Tetrad 2 thermalcycler using the following PCR program: (1) 95°C for 15 min, (2) 94°C denaturation for 30 s, (3) 48° or 52°C annealing for 1:30 min, (4) 72°C extension for 1:30 min with 35 cycles of steps 2–4. PCR products were run on agarose gels.

Fluorescent-labeled primers were tested for eighteen markers that amplified in both P. feriarum and P. nigrita (D6, D C08b, D D10, D 10b, D D11b, D D12b, D E04, D_E06, D_E08b, D_E10, D_F03, D_F10, D_G05, D_G08b, D G10b, D F07, A8, A11). Six markers (Table 1) were selected following the criteria: (1) consistent amplification of a single polymorphic locus in both species, (2) low allelic dropout and/or null alleles determined from a pedigree analysis of 16 F1 hybrid families (Supplementary Table 1). The six loci were amplified in 10 µl multiplexed reactions using the QIAGEN Multiplex PCR kit (Qiagen Inc.). Three primer pairs were added to each well, including fluorescently-labelled forward primers with Hex, 6-FAM (Integrated DNA Technologies), and NED (Applied Biosystems). Reactions included 5 µl QIAGEN Multiplex PCR Master Mix, 1ul 10× primer mix containing 2 µM of each primer, 3 µl RNAase free H₂0, and 1 µl DNA (10-50 ng/µl). PCR amplification was conducted as above, except using a 54°C annealing temperature. Fragment analysis was conducted on an Applied Biosystems 3730 DNA sequencer, using GeneScan 500 ROX size standard. Loci were genotyped with GeneMapper 4.0 (Applied Biosystems).

Genotypic data for 85 individuals of P. feriarum from Macon Co., Alabama were analyzed using GENEPOP (Rousset 2008). This sample included multiple ponds in Tuskeegee National Forest. The null hypothesis of Hardy-Weinberg equilibrium was rejected for three of six loci in Table 1 following a Bonferroni correction, probably as a consequence of combining ponds. No linkage disequilibrium was observed (dememorization, 1,000; number of batches 100; number of iterations per batch 1,000) following a Bonferroni correction. Heterozygosity was less than expected at all loci but high allelic diversity (42-71 alleles/locus) was observed. The frequency of null alleles was estimated from a pedigree analysis of multiple families at 0-31%, with only one locus above 16% (Supplementary Table 1). A relatively high frequency of null alleles, such as in D_E10 (31%), could affect tests of Hardy-Weinberg equilibrium and estimates of population subdivision, thus

continued	
-	
e	
q	
La	

Locus name	Species	Primer sequence 5'-3' and Label	Multiplex	Repeat motif	Size (bp)	Prop. Genotyped	\mathbf{A}_{N} T_{a} (°C)) H _o	H_E	HW P value
D_G08b	P. maculata	F: CTAAGGGGGGGGACATTGTAAAGTTGT PET	Murphy_1	$(TAC)_2(TG)_4(TA)_2$	245–275	142/142	11 58	0.81	0.84	0.3212
		R: CCTATTTAACACTTGTCTGTTCACT		$TCTA(TG)_2(TA)_3(GATA)_{14}$						

temperature (T_a), genetic variability measures (H₀ and H_E), and Hardy–Weinberg P values are provided (significant values after a Bonferroni correction are indicated with an asterisk). For the primer sequence, "F" and "F" indicate For each locus the primer sequence and fluorescent label, multiplex combinations, repeat pattern, allele size range, proportion of individuals tested that were successfully genotyped at each locus, total number of alleles (A_N), annealing

studies

were used in both

the forward and reverse primers, respectively.

(D_C08b and D_E10)

that two loci

Note that the first six loci were optimized for P. feriarum and P. nigrita (Lemmon multiplexes), whereas the last nine loci were optimized for P. maculata (Murphy multiplexes). Note also

Locus name	P. brachyphona	P. clarkii	P. fouquettei	P. kalmi	P. maculata	P. triseriata	P. feriarum	P. nigrita
D6	2/2	2/2	2/2	0/2	0/2	2/2	2/2	2/2
D_C08b	2/2	2/2	2/2	2/2	0/2	2/2	2/2	2/2
D_D12b	n/a	n/a	n/a	n/a	n/a	n/a	2/2	2/2
D_D10	2/2	2/2	2/2	1/2	0/2	0/2	2/2	2/2
D_D10b	1/2	0/2	0/2	0/2	0/2	0/2	2/2	2/2
D_E10	0/2	2/2	2/2	1/2	2/2	1/2	2/2	2/2
D_G08b	1/2	1/2	2/2	2/2	2/2	0/2	2/2	1/2
D_E06	2/2	2/2	0/2	2/2	2/2	2/2	2/2	1/2
D_A10b	0/2	0/2	1/2	2/2	1/2	0/2	0/2	0/2
D_D11b	0/2	0/2	2/2	1/2	2/2	0/2	2/2	2/2
A8	n/a	n/a	n/a	n/a	2/2	n/a	n/a	n/a
D11	1/2	2/2	0/2	2/2	2/2	1/2	1/2	2/2
D_E04	0/2	0/2	2/2	2/2	2/2	0/2	1/2	2/2
A2	n/a	n/a	n/a	n/a	2/2	n/a	n/a	n/a
D_C12	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2
D_A08b	0/2	0/2	0/2	0/2	1/2	1/2	1/2	1/2
D_E09b	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2
D_B09	n/a	n/a	n/a	n/a	0/2	n/a	n/a	n/a
D_F07	2/2	2/2	2/2	0/2	2/2	2/2	2/2	2/2
D_F10	0/2	0/2	1/2	0/2	2/2	0/2	2/2	2/2
D_G05	2/2	2/2	2/2	0/2	2/2	2/2	2/2	2/2
D8	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2
D5	1/2	2/2	2/2	2/2	2/2	2/2	0/2	1/2
D_B10b	0/2	2/2	2/2	2/2	2/2	1/2	1/2	1/2

Table 2 Pattern of cross-species amplification in thirteen microsatellites tested in seven *Pseudacris* species and twenty-three microsatellites tested in *P. maculata*

At least two individuals were tested for each species for each locus. Ratios indicate the proportion of individuals for which the locus showed amplification. An "n/a" indicates species that were not tested for a particular locus

reducing the utility of this marker. In the cross-species amplification tests, most loci amplified in most of the eight species, although no locus amplified in all species (Table 2).

After screening twenty-three loci in *P. maculata*, twenty of which amplified a band, fluorescent-labeled primers were tested for nine markers (A8, D11, D A10b, D C08b, D_D11b, D_E04, D_E06, D_E10, D_G08b; Table 1) on 142 individuals (methods from Murphy et al. 2010). Markers were selected based on: (1) consistent amplification of a single polymorphic locus, (2) ability to multiplex loci, and (3) low null alleles as determined from 47 trial samples using Microchecker (Van Oosterhout et al. 2006). Loci were amplified in two multiplexed reactions using the QIAGEN Multiplex PCR kit (Table 1). Multiplexes consisted of 3 µl Qiagen multiplex mix, 1.6 µl Q-solution, primer mix containing 0.09-0.17 µl 10 µM each primer, 1ul DNA (\sim 5–50 ng/µL) and RNAase free H₂0 to volume (8 µl). PCR was conducted on a Bio-Rad thermalcycler using the following program: (1) 95°C for 15 min, (2) 94°C denaturation for 30 s, (3) 58°C annealing for 1:30 min, (4) 72°C extension for 1:30 min, (5) 35–45 cycles of steps 2–4, (6) 72°C for 1 h, and (7) hold at 4°C. Fragment analysis was conducted on an Applied Biosystems 3100 DNA sequencer, using the GeneScan 500 LIZ size standard, and loci were genotyped with GeneMapper 3.8 (Applied Biosystems). Data were analyzed for heterozygosity, allelic diversity, Hardy–Weinberg and linkage disequilibrium using GENEPOP (Rousset 2008; Table 1). No violations of Hardy–Weinberg equilibrium or linkage disequilibrium were observed after Bonferroni correction. We now hope to employ the microsatellites developed in this study for various population genetic studies within the genus *Pseudacris*.

Acknowledgments We thank Sandra Boles, Heather Hurston, Tierney Wayne, and Alan Lemmon. This research was supported by an NSF GRF and DDIG (0309309) to EML; NSF DDIG (0608458), EPA-STAR fellowship (FP-916695), and James King Fellowship to MAM; NSF IRCEB Grant 0078150 to David Cannatella; and NSF DEB 0546316 to TEJ.

References

- Lemmon AR, Lemmon EM (2008) A likelihood framework for estimating phylogeographic history on a continuous landscape. Syst Biol 57:544–561
- Lemmon EM (2009) Diversification of conspecific signals in sympatry: geographic overlap drives multidimensional reproductive character displacement in frogs. Evolution 63:1155– 1170
- Lemmon EM, Lemmon AR (2010) Reinforcement in chorus frogs: lifetime fitness estimates including intrinsic natural selection and sexual selection against hybrids. Evolution 64:1748–1761
- Lemmon EM, Lemmon AR, Collins JT, Lee-Yaw JA, Cannatella DC (2007a) Phylogeny-based delimitation of species boundaries and contact zones in the trilling chorus frogs (*Pseudacris*). Mol Phylogenet Evol 44:1068–1082
- Lemmon EM, Lemmon AR, Cannatella DC (2007b) Geological and climatic forces driving speciation in the continentally distributed trilling chorus frogs (*Pseudacris*). Evolution 61:2086–2103

- Matthews JH, Boles S, Parmesan C, Juenger TE (2007) Isolation and characterization of nuclear microsatellite loci for the common green darner dragonfly *Anax junius* (Odonata: Aeshnidae) to constrain patterns of phenotypic and spatial diversity. Mol Ecol Notes 7:845–847
- Moriarty EC, Cannatella DC (2004) Phylogenetic relationships of the North American chorus frogs (*Pseudacris*: Hylidae). Mol Phylogenet Evol 30:409–420
- Murphy MA, Evans JS, Storfer A (2010) Quantifying *Bufo boreas* connectivity in Yellowstone National Park with landscape genetics. Ecology 91:252–261
- Rousset F (2008) 'GENEPOP'007: a complete re-implementation of the GENEPOP software for Windows and Linux'. Mol Ecol Resources 8:103–106
- Van Oosterhout C, Weetman D, Hutchinson WF (2006) Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol Ecol Notes 6:255–256